

BAREKENG: Journal of Mathematics and Its ApplicationSeptember 2022Volume 16 Issue 3Page 829–834P-ISSN: 1978-7227E-ISSN: 2615-3017

doi https://doi.org/10.30598/barekengvol16iss3pp829-834

AN EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION OF THE DIRICHLET PROBLEM WITH THE DATA IN MORREY SPACES

Nicky K. Tumalun^{*}

Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Manado Tataran-Remboken St., Kec. Tondano Selatan, Kabupaten Minahasa, 95681, Indonesia

Corresponding author's e-mail: * nickytumalun@unima.ac.id

Abstract. Let $n - 2 < \lambda < n$, f be a function in Morrey spaces $L^{1,\lambda}(\Omega)$, and the equation

$$\begin{cases} Lu = f, \\ u \in W_0^{1,2}(\Omega), \end{cases}$$

be a Dirichlet problem, where Ω is a bounded open subset of \mathbb{R}^n , $n \ge 3$, and L is a divergent elliptic operator. In this paper, we prove the existence and uniqueness of this Dirichlet problem by directly using the Lax-Milgram Lemma and the weighted estimation in Morrey spaces.

Keywords: Morrey spaces, Dirichlet problem, elliptic equations.

Article info:

Submitted: 4th April 2022

Accepted: 9th July 2022

How to cite this article:

N. K. Tumalun, "AN EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION OF THE DIRICHLET PROBLEM WITH THE DATA IN MORREY SPACES", *BAREKENG: J. Math. & App.*, vol. 16, iss. 3, pp. 829-834, September, 2022.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. *Copyright* © 2021 Author(s)

1. INTRODUCTION

Let Ω be a bounded and open subset of \mathbb{R}^n , where $n \geq 3$, and l be the diameter of Ω . For every $a \in \Omega$ and r > 0, we define (_ m)ⁿ | .

and

$$B(a,r) = \{y \in \mathbb{R}^n : |y-a| < r\},\$$

$$\Omega(a,r) = \Omega \cap B(a,r) = \{y \in \Omega : |y-a| < r\}.$$

The Morrey spaces $L^{p,\lambda}(\Omega)$ is defined to be the set of all functions $f \in L^p(\Omega)$ which satisfy

$$\|f\|_{L^{p,\lambda}} = \sup_{a \in \Omega, r > 0} \left(\frac{1}{r^{\lambda}} \int_{\Omega(a,r)} |f(y)|^p dy \right)^{\overline{p}} < \infty$$

for $1 \le p < \infty$ and $0 \le \lambda \le n$. This Morrey spaces were introduced by C. B. Morrey [1] and still attracted the attention of many researcher to investigate its inclusion properties or application in partial differential equation [2, 3, 4, 5, 6, 7, 8].

Let $W^{1,2}(\Omega)$ be the Sobolev space equipped by the norm

$$\|u\|_{W^{1,2}(\Omega)} = \left(\|u\|_{L^{2}(\Omega)}^{2} + \sum_{i=1}^{n} \left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} = \left(\int_{\Omega} |u|^{2} + \int_{\Omega} \left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right)^{\frac{1}{2}}$$

for every $u \in W^{1,2}(\Omega)$. The closure of $C_0^{\infty}(\Omega)$ under the Sobolev norm is denoted by $W_0^{1,2}(\Omega)$. It is well known that $W_0^{1,2}(\Omega)$ is a Hilbert space, that is, the Sobolev norm is generated by an inner or scalar product on $W_0^{1,2}(\Omega)$.

We consider the following second order divergent elliptic operator

$$Lu = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_j} \left(a_{i,j} \frac{\partial u}{\partial x_i} \right), \tag{1}$$

where $u \in W_0^{1,2}(\Omega)$,

$$a_{i,j} \in L^{\infty}(\Omega), \qquad i,j = 1, \dots, n,$$
(2)

and there exists $\nu > 0$ such that

$$|v|\xi|^2 \le \sum_{i,j=1}^n a_{i,j}(x)\xi_i\xi_j,$$
 (3)

for every $\xi = (\xi_1, ..., \xi_n) \in \mathbb{R}^n$ and for almost every $x \in \Omega$.

Let $f \in L^{1,\lambda}(\Omega)$. In this paper, we will investigate the existence and uniqueness of the weak solution to the equation

$$\begin{cases} Lu = f, \\ u \in W_0^{1,2}(\Omega), \end{cases}$$
(4)

where L is defined by (1) and the λ satisfies a certain condition. The Eq. (4) is called the Dirichlet problem.

The function $u \in W_0^{1,2}(\Omega)$ is called the weak solution of the Dirichlet problem (4) if

$$\int_{\Omega} \sum_{i,j=1}^{n} a_{i,j}(x) \frac{\partial u(x)}{\partial x_i} \frac{\partial \phi(x)}{\partial x_j} dx = \int_{\Omega} f(x)\phi(x)dx,$$
(5)

for every $\phi \in W_0^{1,2}(\Omega)$.

Recently, Tumalun and Tuerah [9], continue the work of Di Fazio [10, 11], proved that the weak solution of gradient of (4) belongs to some weak Morrey spaces by assuming $f \in L^{1,\lambda}(\Omega)$ for $0 < \lambda < n - 2$. Notice that, the result in [9], generalized by themselves in [12]. In [9, 10, 11], the authors used a representation of the weak solution, which involves the Green function [13], and proved that this representation satisfies (5) to show the existence of the weak solution of (4). Cirmi et. al [14] proved that the weak solution of (4) exists and unique, and its gradient belongs to some Morrey spaces, where they assumed $f \in L^{1,\lambda}(\Omega)$ for $n-2 < \infty$ $\lambda < n$. The proof of the existence and uniqueness of the weak solution, which is done by Cirmi et. al, used an approximation method.

830

By assuming $f \in L^{1,\lambda}(\Omega)$, for $n - 2 < \lambda < n$, in this paper we will give a direct proof of the existence and uniqueness of the weak solution of the Dirichlet problem (4). Our method uses a functional analysis tool, i.e. the Lax-Millgram lemma, combining with a weighted embeddings in Morrey and Sobolev spaces.

2. RESEARCH METHODS

The constant $C = C(\alpha, \beta, ..., \gamma)$, which appears throughout this paper, denotes that it is dependent on $\alpha, \beta, ..., \alpha$ and γ . The value of this constant may vary from line to line whenever it appears in the theorems or proofs.

Our method relies on functional analysis tools, that is Lax-Milgram lemma, that we will state in this section. We start by write down some properties related to Lax-Milgram lemma.

Let *H* be a Hilbert space with norm $\|\cdot\|$ and $B: H \times H \to \mathbb{R}$ be a bilinear mapping. The map *B* is called continuous if there exists a constant $C_1 > 0$ such that

$$|\boldsymbol{B}(u,w)| \le C_1 \|u\| \|w\|$$

for all $u, w \in H$, and called coercive if there exists a constant $C_2 > 0$ such that

$$\boldsymbol{B}(u,u) \geq C_2 \|u\|^2,$$

for all $u \in H$.

The following lemma is known as Lax-Milgram lemma and *H* is the Hilbert space with norm $\|\cdot\|$. We refer to [15] for its proof.

Lemma 1 (Lax-Milgram). Let $B: H \times H \to \mathbb{R}$ be a continuous and coercive bilinear mapping. Then, for every bounded linear functional $F: H \to \mathbb{R}$, there exists a unique element $u \in H$ such that F(w) = B(u, w),

for every $w \in H$.

We associate the operator *L* with the mapping $\boldsymbol{B}: W_0^{1,2}(\Omega) \times W_0^{1,2}(\Omega) \to \mathbb{R}$ defined by the formula

$$\boldsymbol{B}(\boldsymbol{u},\boldsymbol{\phi}) = \int_{\Omega} \sum_{i,j=1}^{n} a_{i,j}(\boldsymbol{x}) \frac{\partial \boldsymbol{u}(\boldsymbol{x})}{\partial x_i} \frac{\partial \boldsymbol{\phi}(\boldsymbol{x})}{\partial x_j} d\boldsymbol{x}.$$
 (6)

For $n-2 < \lambda < n$ and $f \in L^{1,\lambda}(\Omega)$, we define $F_f: W_0^{1,2}(\Omega) \to \mathbb{R}$ by the formula

$$F_f(\phi) = \int_{\Omega} f(x)\phi(x)dx.$$
 (7)

By the linearity of the weak derivative and integration, it is easy to show that **B**, defined by (6), is a bilinear mapping. Notice that, according to (5), (6), and (7), $u \in W_0^{1,2}(\Omega)$ is a weak solution of (4) if

$$\boldsymbol{B}(\boldsymbol{u},\boldsymbol{\phi}) = F_f(\boldsymbol{\phi}),\tag{8}$$

for every $\phi \in W_0^{1,2}(\Omega)$.

Now we state the following two theorems regarding to the estimation for any functions in $W_0^{1,2}(\Omega)$, that we will need later. The first theorems called Poincaré's inequality (see [15] for its proof) and the second theorem called sub representation formula (see [16] for its proof).

Theorem 1 (Poincaré's Inequality). If $u \in W_0^{1,2}(\Omega)$, then there exists a positive constant C = C(l) such that

$$\int_{\Omega} |u|^2 \le C \int_{\Omega} |\nabla u|^2$$

Theorem 2 (Sub Representation Formula). If $u \in W_0^{1,2}(\Omega)$, then there exists a positive constant C = C(n) such that

$$|u(x)| \leq C \int_{\Omega} \frac{|\nabla u(y)|}{|x-y|^{n-1}} dy,$$

for a. e. $x \in \Omega$.

Tumalun

We close this section by state the following Theorem which slightly modified from [17].

Theorem 3. Let $n - 2 < \lambda < n$. If $f \in L^{1,\lambda}(\Omega)$, then there exists a positive constant $C = C(n, \lambda, l)$ such that

$$\int_{\Omega} \frac{|f(x)|}{|z-x|^{n-2}} dx \leq C ||f||_{L^{1,\lambda}},$$

for every $z \in \Omega$.

3. RESULTS AND DISCUSSION

To start our discussion, we prove that the bilinear mapping B defined by (6) is continuous and coercive.

Lemma 2. The mapping **B** defined by (6) is continuous and coercive. **Proof.** Let $u \in W_0^{1,2}(\Omega)$. We first prove the coercivity property. By using (3) and then Poincaré's inequality, we have

$$B(u,u) = \int_{\Omega} \sum_{i,j=1}^{n} a_{i,j}(x) \frac{\partial u(x)}{\partial x_i} \frac{\partial u(x)}{\partial x_j} dx \ge \nu \int_{\Omega} |\nabla u|^2$$
$$\ge \frac{\nu}{2} \int_{\Omega} |\nabla u|^2 + C \int_{\Omega} |u|^2 \ge C (||u||_{W^{1,2}(\Omega)})^2,$$

where C = C(v, l) is a positive constant.

Now, we prove the continuity property. Let $u, \phi \in W_0^{1,2}(\Omega)$. Note that,

$$A = \sum_{i,j=1}^{n} \left\| a_{i,j} \right\|_{L^{\infty}(\Omega)}$$

according to (2). By using Hölder's inequality, we have

$$\begin{split} |B(u,\phi)| &\leq \int_{\Omega} \sum_{i,j=1}^{n} \left\| a_{i,j} \right\|_{L^{\infty}(\Omega)} \left| \frac{\partial u(x)}{\partial x_{i}} \right| \left| \frac{\partial \phi(x)}{\partial x_{j}} \right| dx \\ &\leq A \int_{\Omega} \left| \nabla u(x) \right| \left| \nabla \phi(x) \right| dx \\ &\leq A \left(\int_{\Omega} \left| \nabla u(x) \right|^{2} dx \right)^{\frac{1}{2}} \left(\int_{\Omega} \left| \nabla u(x) \right|^{2} dx \right)^{\frac{1}{2}} \\ &\leq A \| u \|_{W^{1,2}(\Omega)} \| \phi \|_{W^{1,2}(\Omega)}. \end{split}$$

This completes the proof. \Box

We need the theorem below to prove that the function F_f defined by (7) is a bounded linear functional. This theorem states about a weighted estimation in Morrey spaces where the weight in Sobolev spaces. The proof of this theorem was given in [11]. However, the given proof did not complete. Here we give the complete proof.

Theorem 4. Let $n - 2 < \lambda < n$. If $f \in L^{1,\lambda}(\Omega)$, then there exists a positive constant $C = C(n, \lambda, l)$ such that,

$$\int_{\Omega} |fu| \leq C ||f||_{L^{1,\lambda}(\Omega)} ||u||_{W^{1,2}(\Omega)}$$

for every $u \in W_0^{1,2}(\Omega)$.

Proof. Let $u \in W_0^{1,2}(\Omega)$. According to the sub representation formula of u and Hölder's inequality, we have

$$\begin{split} \int_{\Omega} |f(x)u(x)|dx &\leq C(n) \int_{\Omega} |f(x)| \left(\int_{\Omega} \frac{|\nabla u(y)|}{|x-y|^{n-1}} dy \right) dx \\ &= C(n) \int_{\Omega} |\nabla u(y)| \left(\int_{\Omega} \frac{|f(x)|}{|x-y|^{n-1}} dx \right) dy \\ &\leq C(n) \|\nabla u\|_{L^{2}(\Omega)} \left(\int_{\Omega} \left(\int_{\Omega} \frac{|f(x)|}{|x-y|^{n-1}} dx \right)^{2} dy \right)^{\frac{1}{2}}. \end{split}$$
(9)

Notice that

$$\int_{\Omega} |f(z)| dz \le C(n,\lambda,l) \|f\|_{L^{1,\lambda}(\Omega)}.$$
(10)

Hence

$$\begin{split} \int_{\Omega} \left(\int_{\Omega} \frac{|f(x)|}{|x-y|^{n-1}} dx \right)^2 dy &= \int_{\Omega} \left(\int_{\Omega} \frac{|f(z)|}{|z-y|^{n-1}} dz \right) \left(\int_{\Omega} \frac{|f(x)|}{|x-y|^{n-1}} dx \right) dy \\ &= \int_{\Omega} \int_{\Omega} \int_{\Omega} |f(z)| |f(x)| \left(\int_{\Omega} \frac{1}{|z-y|^{n-1}|x-y|^{n-1}} dy \right) dx dz \\ &\leq C(n) \int_{\Omega} \int_{\Omega} \int_{\Omega} |f(z)| |f(x)| \frac{1}{|z-x|^{n-2}} dx dz \\ &= C(n) \int_{\Omega} |f(z)| \left(\int_{\Omega} \frac{|f(x)|}{|z-x|^{n-2}} dx \right) dz \\ &\leq C(n,\lambda,l) \|f\|_{L^{1,\lambda}(\Omega)} \int_{\Omega} |f(z)| dz \\ &\leq C(n,\lambda,l) \left(\|f\|_{L^{1,\lambda}(\Omega)} \right)^2 \end{split}$$
(11)

by virtue of Theorem 3 and (10). Combining (9) and (11), we obtain

$$\begin{split} \int_{\Omega} |f(x)u(x)|dx &\leq C(n) \|\nabla u\|_{L^{2}(\Omega)} \left(\int_{\Omega} \left(\int_{\Omega} \frac{|f(x)|}{|x-y|^{n-1}} dx \right)^{2} dy \right)^{\frac{1}{2}} \\ &\leq C(n,\lambda,l) \|\nabla u\|_{L^{2}(\Omega)} \|f\|_{L^{1,\lambda}(\Omega)} \\ &\leq C(n,\lambda,l) \|u\|_{W^{1,2}(\Omega)} \|f\|_{L^{1,\lambda}(\Omega)}. \end{split}$$

The theorem is proved. \Box

From Theorem 4, we obtain the following corollary.

Corollary 1. Let $n - 2 < \lambda < n$. The mapping $F_f: W_0^{1,2}(\Omega) \to \mathbb{R}$ defined by (7) is a bounded linear functional.

Proof. According to the linearity of integration, F_f is a linear functional on $W_0^{1,2}(\Omega)$. For every $u \in W_0^{1,2}(\Omega)$, Theorem 4 gives us

$$\left|F_{f}(u)\right| \leq \int_{\Omega} |fu| \leq C ||u||_{W^{1,2}(\Omega)}$$

where the positive constant $C = C(n, \lambda, l, ||f||_{L^{1,\lambda}(\Omega)})$. This means F_f is also bounded and the proof is complete. \Box

Combining Lemma 2, Corollary 1, and Lax-Milgram lemma, we now state the following existence and uniqueness of the weak solution of the Dirichlet problem (4).

Theorem 5. Let $n - 2 < \lambda < n$ and $f \in L^{1,\lambda}(\Omega)$ in Dirichlet problem (4). Then there exists a unique element $u \in W_0^{1,2}(\Omega)$ which is the weak solution of the Dirichlet problem (4).

4. CONCLUSIONS

The Dirichlet problem (4) has a unique weak solution by assuming the data belongs some Morrey spaces. This fact can be proved by using functional analysis tool, i.e. the Lax-Milgram lemma, combining with the weighted embedding in Morrey spaces where the weight in Soblev spaces.

AKNOWLEDGEMENT

The author thanks LPPM Unima for supporting this research in 2022.

REFERENCES

- [1] C. B. Morrey, "On the solutions of quasi-linear elliptic partial differential equations," *Trans. Amer. Math. Soc.*, vol. 43, pp. 126-166, 1938.
- [2] P. E. A. Tuerah and N. K. Tumalun, "Some notes on the inclusion between Morrey spaces," J. Math. Inequal., vol. 16, no. 1, pp. 355-362, 2022.
- [3] N. K. Tumalun, "Proper inclusion between vanishing Morrey spaces and Morrey spaces," *Tensor: Pure and Applied Mathematics Journal*, vol. 2, no. 1, pp. 1-4, 2021.
- [4] R. Kawasumi and E. Nakai, "Pointwise multipliers on weak Morrey spaces," Anal. Geom. Metr. Spaces, vol. 8, no. 1, pp. 363-381, 2020.
- [5] N. K. Tumalun, D. I. Hakim and H. Gunawan, "Inclusion between generalized Stummel classes and other function spaces," *Math. Inequal. Appl.*, vol. 23, no. 2, pp. 547-562, 2020.
- [6] N. K. Tumalun and H. Gunawan, "Morrey spaces are embedded between weak Morrey spaces and Stummel classes," J. Indones. Math. Soc., vol. 25, no. 3, pp. 203-209, 2019.
- [7] N. K. Tumalun, H. Gunawan and J. Lindiarni, "On the inclusion between weak Lebesgue spaces and Stummel classes," in 5th ICRIEMS, Yogyakarta, 2018.
- [8] N. K. Tumalun, D. I. Hakim and H. Gunawan, "Some function spaces and their applications to elliptic partial differential equations," *Math. Vesnik (in press)*, 2022.
- [9] N. K. Tumalun and P. E. A. Tuerah, "A regularity of the weak solution gradient of the Dirichlet problem for divergent form elliptic equations in Morrey spaces," *Aust. J. Math. Anal. Appl.*, vol. 18, no. 2, pp. 14.1-14.7, 2021.
- [10] G. Di Fazio, "Regularity for elliptic equations under minimal assumptions," J. Indones. Math. Soc., vol. 26, no. 1, pp. 101-127, 2020.
- [11] G. Di Fazio, "On Dirichlet problem in Morrey spaces," J. Differential and Integral Equations, vol. 6, pp. 383-391, 1993.
- [12] N. K. Tumalun and P. E. A. Tuerah, "A regularity of the Dirichlet problem with the data belongs to generalized Morrey spaces," in AIP Proceeding (to appear), Semarang, 2021.
- [13] M. Gruter and K. O. Widman, "The Green function for uniformly elliptic equations," *Manuscripta Math.*, vol. 37, pp. 303-342, 1982.
- [14] G. R. Cirmi, S. D'Asero and S. Leonardi, "Morrey estimates for a class of elliptic equations with drift terms," Adv. Nonlinear Anal., vol. 9, pp. 1333-1350, 2020.
- [15] H. Brezis, Functional Analysis, Sobolev Spaces, and Partial Differential Equations, New York: Springer, 2011.
- [16] R. Wheeden and A. Zygmund, Measure and Integral. An Introduction to Real Analysis. Second Edition, Boca Raton: Taylor & Francis Group, 2015.
- [17] G. Di Fazio, "Holder continuity of the solutions for some Schrodinger equations," *Rend. Sem. Math. Padova*, vol. 79, pp. 173-183, 1988.