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Abstract. In this paper, we prove that the weak solution of the Dirichlet problem and its modulus of gradient, with the data 

belongs to the generalized Morrey spaces, are the element of some weak Morrey spaces. 

INTRODUCTION 
Let Ω be an open, bounded, and connected subset of ℝ𝑛, with 𝑛 ≥ 3. We are interested to investigate the following 

Dirichlet problem 

{
𝐿𝑢 = 𝑓,

𝑢 ∈ 𝑊0
1,2(Ω),

 
(1) 

where 𝐿 is the divergent elliptic operator. Here the function 𝑓, which is called data, belongs to the generalized 

Morrey spaces defined by Nakai [1]. The Morrey spaces played an important role not only in the theory of partial 

differential equations [2, 3, 4] but also in the theory of function spaces [5, 6, 7, 8, 9]. 

For the case the data 𝑓 is the element of the suitable (classical) Morrey spaces, Di Fazio [10] has proved the weak 

solution of Dirichlet problem (1) belongs to the some weak (classical) Morrey spaces. This result was generalized by 

Borrello [11], that was used the system of Hörmander vector fields in ℝ𝑛 to define the degenerate elliptic operator 𝐿. 

Both of [10] and [11] used the Green functions introduced in [12]. In 2020, by using the Green function from [13], Di 

Fazio [14] obtained similar result as in [10]. Continuing the work of Di Fazio, Tumalun and Tuerah [15] have recently 

proved that the problem the weak solution gradient of problem (1) belongs to some weak Morrey spaces. Recently, 

by assuming the elliptic operator 𝐿 with drift term and the data belongs to some Morrey spaces, Cirmi et al. [16] 

proved the weak solution of (1) is Hölder continuous and its gradient belongs to some Morrey spaces. For the data 

belongs to some generalized weighted Morrey spaces, in [17] they obtained that the gradient of the weak solution of 

problem (1) also belong to the same spaces. 

Considering the data 𝑓 in problem (1) is the element of generalized Morrey spaces, our regularity result in this 

paper generalizes the previous works which are obtained by previous authors, in the setting 𝐿 is the divergent elliptic 

operator. We also show that the modulus of weak solution gradient belongs to some generalized Morrey spaces. 

 

NOTATIONS, FUNCTION SPACES, AND SOME TOOLS 
Throughout this paper, let Ω be an open, bounded, and connected subset of ℝ𝑛, with 𝑛 ≥ 3. For every 𝐸 measurable 

subset of ℝ𝑛 and 𝑎 ∈ ℝ𝑛, notation |𝐸| denoted the (Lebesgue) measure of 𝐸 and |𝑎| denoted the Euclidean norm for 

𝑎. For 𝑟 > 0, we define 

𝐵(𝑎, 𝑟) = {𝑦 ∈ ℝ𝑛: |𝑦 − 𝑎| < 𝑟}, 
and 

Ω(𝑎, 𝑟) = Ω ∩ 𝐵(𝑎, 𝑟) = {𝑦 ∈ Ω: |𝑦 − 𝑎| < 𝑟}. 
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The generalized Morrey spaces 𝐿1,𝜑(Ω), for 𝜑: (0,∞) ⟶ (0,∞), is the set of all functions 𝑓 ∈ 𝐿1(Ω) which 

satisfies 

‖𝑓‖
𝐿1,𝜑

= sup
𝑥∈Ω,𝑟>0

(
1

𝜑(𝑟)
∫ |𝑓(𝑦)|𝑑𝑦
Ω(𝑎,𝑟)

) < ∞. 

Meanwhile, for 1 ≤ 𝑝 < ∞, the set of all measurable functions 𝑓 defined on Ω which satisfies 

‖𝑓‖
𝑤𝐿𝑝,𝜑

= sup
𝑥∈Ω,𝑟>0

(

 
sup
𝑡>0

𝑡|{𝑥 ∈ Ω(𝑎, 𝑟): |𝑓(𝑥)| > 𝑡}|
1
𝑝

𝜑(𝑟)
1
𝑝

)

 < ∞, 

is called the generalized weak Morrey spaces and denoted by 𝑤𝐿𝑝,𝜑(Ω). 
The function 𝜑 above is always assumed to satisfy the following conditions. First, 𝜑 is 𝒏-almost decreasing 

function, that is, 

𝑠 ≤ 𝑡 ⟹
𝜑(𝑠)

𝑠𝑛
≥ 𝐶0

𝜑(𝑡)

𝑡𝑛
, 

for a constant positive 𝐶0. Second, 𝜑 satisfies Nakai’s condition, that is, there exist 𝛼 < 0 such that, for all 𝛿 > 0, 

∫
𝜑(𝑡)

𝑡𝑛−1

∞

𝛿

𝑑𝑡 ≤ 𝐶1𝛿
𝛼 , 

for a constant positive 𝐶1. 

For 𝑞 = 1,2, let 𝑊1,𝑞(Ω) be the Sobolev spaces. The closure of 𝐶0
∞(Ω) in 𝑊1,𝑞(Ω) under the Sobolev norm is 

denoted by 𝑊0
1,𝑞
(Ω). The notation 𝐻−1(Ω) is the dual space of 𝑊0

1,2(Ω). Now, we consider the following second 

order divergent elliptic operator 

𝐿𝑢 = − ∑
𝜕

𝜕𝑥𝑗

∞

𝑖,𝑗=1

(𝑎𝑖𝑗
𝜕𝑢

𝜕𝑥𝑖
),  

where 𝑢 ∈ 𝑊0
1,2(Ω), 

𝑎𝑖𝑗 = 𝑎𝑗𝑖 ∈ 𝐿
∞(Ω),    𝑖, 𝑗 = 1, 2, … , 𝑛, 

and there exists 𝜆 > 0 such that, 

𝜆|𝜉|2 ≤ ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

(𝑥)𝜉𝑖𝜉𝑗 ≤ 𝜆
−1|𝜉|2, 

for every 𝜉 = (𝜉1, … , 𝜉𝑛) ∈ ℝ
𝑛 and for almost all 𝑥 ∈ Ω. Moreover, we assume a regularity condition of the 

coefficients of the operator 𝐿, that is, 𝑎𝑖,𝑗  satisfies Dini-continuous condition 

|𝑎𝑖,𝑗(𝑥) − 𝑎𝑖,𝑗(𝑦)| ≤ 𝜔(|𝑥 − 𝑦|),     ∀𝑥, 𝑦 ∈ Ω. 

Here 𝜔: (0,∞) ⟶ (0,∞) is non-decreasing, satisfies  

𝜔(2𝑡) ≤ 𝐶𝜔(𝑡) 
for a constant 𝐶 and for all 𝑡 > 0, and 

∫
𝜔(𝑡)

𝑡

∞

0

𝑑𝑡 < ∞. 

In the Dirichlet problem (1), let 𝑓 ∈ 𝐿1,𝜑(Ω) ∩ 𝐻−1(Ω) and 𝐿 be the second order divergent elliptic operator above. 

A function 𝑢 ∈ 𝑊0
1,2(Ω) is a weak solution of problem (1) if 

∫ ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

(𝑥)
Ω

𝜕𝑢(𝑥)

𝜕𝑥𝑖

𝜕𝜙(𝑥)

𝜕𝑥𝑖
𝑑𝑥 =  ∫ 𝑓(𝑥)

Ω

𝜙(𝑥)𝑑𝑥,  

for every 𝜙 ∈ 𝐶0
∞(Ω). Furthermore, a function 𝑢 ∈ 𝐿1(Ω) is a very weak solution of problem (1) if for every 𝜙 ∈

𝑊0
1,2(Ω) ∩ 𝐶(Ω̅) such that 𝐿𝜙 ∈ 𝐶(Ω̅), we have 

∫ 𝑢(𝑥)
Ω

𝐿𝜙(𝑥)𝑑𝑥 =  ∫ 𝑓(𝑥)
Ω

𝜙(𝑥)𝑑𝑥. 

One of important facts, we will use later, that if 𝑢 is the very weak solution of problem (1), then 𝑢 is the weak 

solution of problem (1) (see [12] and [14]).  

The following theorem stated the existence of the Green function for the operator 𝐿 and domain Ω. 

Theorem 1. (Gr�̈�ter and Widman, [13]). There exists a unique function 𝐺: 𝛺 × 𝛺 → [0,∞] such that, for each 𝑦 ∈
𝛺 and 𝑟 > 0, 
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𝐺(∙, 𝑦) ∈ 𝑊1,2(Ω\𝐵(𝑦, 𝑟))  ∩ 𝑊0
1,1(Ω), (2) 

and for all 𝜙 ∈ 𝐶0
∞(Ω), 

∫ ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

(𝑥)
Ω

𝜕𝐺(𝑥, 𝑦)

𝜕𝑥𝑖

𝜕𝜙(𝑥)

𝜕𝑥𝑗
𝑑𝑥 =  𝜙(𝑦). (3) 

Furthermore, there exists a positive constant 𝐶 = 𝐶(𝑛, 𝜆) such that, 

𝐺(𝑥, 𝑦) ≤ 𝐶|𝑥 − 𝑦|2−𝑛, (4) 
for all 𝑥, 𝑦 ∈ Ω, 𝑥 ≠ 𝑦, and there a positive constant 𝐶 = (𝑛, 𝜆, 𝜔, Ω) such that, 

|∇𝑥𝐺(𝑥, 𝑦)| ≤ 𝐶|𝑥 − 𝑦|
1−𝑛, (5) 

for all 𝑥, 𝑦 ∈ Ω, 𝑥 ≠ 𝑦. 

The function 𝐺 in Theorem 1 is called the Green function. Now, fix 𝑦 ∈ Ω. According to (2), 𝐺(∙, 𝑦) has a weak 

derivative in Ω, which is denoted by 
𝜕𝐺(𝑥,𝑦)

𝜕𝑥𝑖
, for 𝑖 = 1,… , 𝑛. Therefore 

∫
𝜕𝐺(𝑥, 𝑦)

𝜕𝑥𝑖
𝜙(𝑥)

Ω

𝑑𝑥 =  −∫ 𝐺(𝑥, 𝑦)
𝜕𝜙(𝑥)

𝜕𝑥𝑖Ω

𝑑𝑥, (6) 

for all  𝜙 ∈ 𝐶0
∞(Ω). 

For every 𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑛), let 𝑀 be the Hardy-Littlewood maximal operator, defined by 

𝑀(𝑓)(𝑥) = sup
𝑟>0

1

|𝐵(𝑥, 𝑟)|
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,𝑟)

, 

where 𝑥 ∈ ℝ𝑛. Since 𝜑 is 𝑛-almost decreasing function, then the following boundedness property of maximal 

function holds. 

Theorem 2. (Nakai, [18]) Let 𝑎 ∈ 𝛺 and 𝑟 > 0. If 𝑓 ∈ 𝐿1,𝜑(𝛺), then there exists a positive constant 𝐶, which is 

independent from 𝑎 and 𝑟, such that, 

sup
𝑡>0
 𝑡|{𝑦 ∈ Ω(𝑎, 𝑟): |𝑓(𝑦)| > 𝑡}| ≤ 𝐶𝜑(𝑟)‖𝑓‖

𝐿1,𝜑
. 

The notation 𝐶(𝛼, 𝛽, … , 𝛾), which will be appeared in all proofs in this paper, represents the positive constant 

which depends on 𝛼, 𝛽, …, 𝛾 and can be vary from line to line in its occurrence. 

Here we provide some basic advice for formatting your mathematics, but we do not attempt to define detailed 

styles or specifications for mathematical typesetting. You should use the standard styles, symbols, and conventions 

for the field/disciplin  

 

RESULT AND DISCUSSION 
We start defining an integral operator which will represent the weak solution of Dirichlet problem (1). Let 𝐺 be 

the Green function for the operator 𝐿 and domain Ω. For every 𝑓 ∈ 𝐿1,𝜑(Ω), we define 

𝑢(𝑥) = ∫ 𝐺(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦
Ω

, (7) 

for every 𝑥 ∈ Ω. 

Theorem 3. There exists a constant positive 𝐶 such that,  

𝑡
𝛼−2
𝛼 |{𝑥 ∈ 𝛺(𝑎, 𝑟): |𝑢(𝑥)| > 𝑡}| ≤ 𝐶‖𝑓‖

𝐿1,𝜑

𝛼−2
𝛼 𝜑(𝑟), 

for every 𝑎 ∈ ℝ𝑛, 𝑟 > 0, and 𝑡 > 0. 

Proof. Let 𝑥 ∈ Ω and 𝛿 > 0. We have 

∫
|𝑓(𝑦)|

|𝑥 − 𝑦|𝑛−2
𝑑𝑦 =

𝛺

∫
|𝑓(𝑦)|

|𝑥 − 𝑦|𝑛−2
𝑑𝑦 +

𝛺(𝑦,2𝛿)

∫
|𝑓(𝑦)|

|𝑥 − 𝑦|𝑛−2
𝑑𝑦

Ω\𝐵(𝑦,2𝛿)

= 𝐼1 + 𝐼2. 

The estimation of 𝐼1 is the following 

𝐼1 ≤ 𝐶(𝑛)𝛿
2𝑀(𝑓)(𝑥). 

By using Nakai’s condition, we estimate the 𝐼2 as follows 

                         𝐼2 ≤∑∫
|𝑓(𝑦)|

|𝑥 − 𝑦|𝑛−22𝑘𝛿≤|𝑥−𝑦|<2𝑘+1𝛿

𝑑𝑦

∞

𝑘=1

≤ 𝐶(𝑛)∑
1

(2𝑘+1𝛿)𝑛−2
φ(2𝑘+1𝛿)

φ(2𝑘+1𝛿)
∫ |𝑓(𝑦)|
2𝑘𝛿≤|𝑥−𝑦|<2𝑘+1𝛿

𝑑𝑦

 

∞

𝑘=1

 

≤ 𝐶(𝑛)‖𝑓‖
𝐿1,𝜑

∫
𝜑(𝑡)

𝑡𝑛−1

∞

𝛿

𝑑𝑡                                  
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≤ 𝐶2‖𝑓‖𝐿1,𝜑𝛿
𝛼 ,                                                       

where 𝐶2 = 𝐶2(𝑛, 𝐶1). Therefore 

∫
|𝑓(𝑦)|

|𝑥 − 𝑦|𝑛−2
𝑑𝑦

𝛺

≤ 𝐶3[𝛿
2𝑀(𝑓)(𝑦) + ‖𝑓‖

𝐿1,𝜑
𝛿𝛼], 

where 𝐶3 = 𝐶3(𝑛, 𝐶2). To minimize this inequality, we choose 

𝛿 = (
𝑀(𝑓)(𝑥)

‖𝑓‖
𝐿1,𝜑

)

1
𝛼−2

 

to obtain 

∫
|𝑓(𝑦)|

|𝑥 − 𝑦|𝑛−2
𝑑𝑦

𝛺

≤ 𝐶3𝑀(𝑓)(𝑥)
𝛼
𝛼−2‖𝑓‖

𝐿1,𝜑

2
2−𝛼 . 

Combining this inequality and (4), we have 

|𝑢(𝑥)| ≤ 𝐶3𝑀(𝑓)(𝑥)
𝛼
𝛼−2‖𝑓‖

𝐿1,𝜑

2
2−𝛼 . 

Let 𝑎 ∈ Ω and 𝑟 > 0 be given. Then 

|{𝑥 ∈ Ω(𝑎, 𝑟): |𝑢(𝑥)| > 𝑡}| ≤ |{𝑥 ∈ Ω(𝑎, 𝑟):𝑀(𝑓)(𝑥) > 𝐶3𝑡
𝛼−2
𝛼 ‖𝑓‖

𝐿1,𝜑

2
𝛼}|, 

holds for every 𝑡 > 0. The right hand side of this inequality can be bounded by applying Theorem 2, that is, 

|{𝑥 ∈ Ω(𝑎, 𝑟):𝑀(𝑓)(𝑥) > 𝐶3𝑡
𝛼−2
𝛼 ‖𝑓‖

𝐿1,𝜑

2
𝛼}| ≤ 𝐶

𝜑(𝑟)

(𝑡
𝛼−2
𝛼 )

‖𝑓‖
𝐿1,𝜑

𝛼−2
𝛼 , 

where the constant positive 𝐶 independent from 𝑎, 𝑟, and 𝑡. Whence 

𝑡
𝛼−2
𝛼 |{𝑥 ∈ Ω(𝑎, 𝑟): |𝑢(𝑥)| > 𝑡}| ≤ 𝐶‖𝑓‖

𝐿1,𝜑

𝛼−2
𝛼 𝜑(𝑟). 

The theorem is proved. ∎ 

The following two lemmas will play important role to compute the weak derivative of 𝑢 and to show that 𝑢 is the 

weak solutions of Dirichlet problem (1). 

Lemma 1. 𝑢 ∈ 𝐿1(𝛺). 
Proof. Let 𝑟 > 0. Then by compactness, there exists a natural number 𝑚, which depends on 𝑛, and 𝑎1, 𝑎2, … , 𝑎𝑚 ∈

Ω such that, Ω ⊆ ⋃ 𝐵(𝑎𝑘 , 𝑟)
𝑚
𝑘=1 . This implies  Ω ⊆ ⋃ Ω(𝑎𝑘 , 𝑟)

𝑚
𝑘=1 . Since Ω is bounded, then |Ω(𝑎𝑘 , 𝑟)| < ∞, for every 

𝑘 = 1, 2, … ,𝑚. By the Cavelieri principle and Theorem 3, we have 

∫ |𝑢(𝑥)|
Ω(𝑎𝑘,𝑟)

𝑑𝑥 = ∫ |{𝑥 ∈ Ω(𝑎𝑘, 𝑟): |𝑢(𝑥)| > 𝑡}|𝑑𝑡
∞

0

                                         

          = ∫ |{𝑥 ∈ Ω(𝑎𝑘 , 𝑟): |𝑢(𝑥)| > 𝑡}|𝑑𝑡
|Ω(𝑎𝑘,𝑟)|

0

        

                                               +∫ |{𝑥 ∈ Ω(𝑎𝑘 , 𝑟): |𝑢(𝑥)| > 𝑡}|𝑑𝑡
∞

|Ω(𝑎𝑘,𝑟)|

                         

          ≤ ∫ |Ω(𝑎𝑘 , 𝑟)|𝑑𝑡
|Ω(𝑎𝑘,𝑟)|

0

+  𝐶 ∫ 𝑡
2−𝛼
𝛼 𝑑𝑡

∞

|Ω(𝑎𝑘,𝑟)|

 

         =  |Ω(𝑎𝑘 , 𝑟)|
2 + 𝐶|Ω(𝑎𝑘 , 𝑟)|

2−𝛼
𝛼
+1                      

is finite since 
2−𝛼

𝛼
+ 1 < 0. Thus 

∫ |𝑢(𝑥)|
Ω

𝑑𝑥 ≤∑∫ |𝑢(𝑥)|
Ω(𝑎𝑘,𝑟)

𝑑𝑥

𝑚

𝑘=1

≤∑(|Ω(𝑎𝑘 , 𝑟)|
2 + 𝐶|Ω(𝑎𝑘 , 𝑟)|

2−𝛼
𝛼
+1)

𝑚

𝑘=1

< ∞. 

We conclude that 𝑢 ∈ 𝐿1(Ω). ∎ 

Lemma 2. If 𝜙 ∈ 𝐶0
∞(𝛺), then 𝑢

𝜕𝜙(𝑥)

𝜕𝑥𝑖
∈ 𝐿1(𝛺). 

Proof. The proof immediately follows from the inequality  

∫ 𝑢(𝑥)
𝜕𝜙(𝑥)

𝜕𝑥𝑖Ω

𝑑𝑥 ≤ max
𝑥∈Ω

|
𝜕𝜙(𝑥)

𝜕𝑥𝑖
|∫ |𝑢(𝑥)|
Ω

𝑑𝑥 < ∞, 

which uses Lemma 1. ∎ 

040057-4

 30 June 2023 04:20:49



Now we will compute the weak derivative of 𝑢 in the next lemma. 

Lemma 3. The weak derivative of 𝑢 is given by 

𝜕𝑢(𝑥)

𝜕𝑥𝑖
=
𝜕

𝜕𝑥𝑖
(∫ 𝐺(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦
Ω

) =  ∫
𝜕𝐺(𝑥, 𝑦)

𝜕𝑥𝑖
𝑓(𝑦)𝑑𝑦

Ω

. 

Proof. Let 𝜙 be an arbitrary element of 𝐶0
∞(𝛺). According to (6), we have 

∫ (∫ 𝐺(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦
Ω

)
𝜕𝜙(𝑥)

𝜕𝑥𝑖
𝑑𝑥

Ω

= ∫ 𝑓(𝑦) (∫ 𝐺(𝑥, 𝑦)
𝜕𝜙(𝑥)

𝜕𝑥𝑖
𝑑𝑥

Ω

)𝑑𝑦
Ω

 

                                                                       = −∫ 𝑓(𝑦) (∫
𝜕𝐺(𝑥, 𝑦)

𝜕𝑥𝑖
𝜙(𝑥)

Ω

𝑑𝑥) 𝑑𝑦
Ω

 

                                                                       = −∫ (∫
𝜕𝐺(𝑥, 𝑦)

𝜕𝑥𝑖
𝑓(𝑦)

Ω

𝑑𝑦)𝜙(𝑥)𝑑𝑥
Ω

. 

Here we use Fubini theorem which is guaranteed by Lemma 2 ∎ 

According to Lemma 1, it is enough to prove that 𝑢 is the very weak solution of problem (1). 

Theorem 4. The function 𝑢 is the weak solution of Dirichlet problem (1) and belongs to 𝑤𝐿
𝛼−2

𝛼
,𝜑(𝛺). 

Proof. Let 𝜙 be an arbitrary element of 𝐻0
1(Ω) ∩ 𝐶(Ω̅) such that 𝐿𝜙 ∈ 𝐶(Ω̅). By using the Green function property 

(3) and Lemma 3, we have 

∫ 𝜙(𝑦)𝑓(𝑦)𝑑𝑦
Ω

= ∫ (∫ ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

(𝑥)
Ω

𝜕𝐺(𝑥, 𝑦)

𝜕𝑥𝑖

𝜕𝜙(𝑥)

𝜕𝑥𝑗
𝑑𝑥)𝑓(𝑦)𝑑𝑦

Ω

 

                              = ∫ ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

(𝑥)
Ω

(∫
𝜕𝐺(𝑥, 𝑦)

𝜕𝑥𝑖
𝑓(𝑦)𝑑𝑦

Ω

)
𝜕𝜙(𝑥)

𝜕𝑥𝑗
𝑑𝑥 = ∫ ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

(𝑥)
Ω

𝜕𝑢(𝑥)

𝜕𝑥𝑖

𝜕𝜙(𝑥)

𝜕𝑥𝑗
𝑑 

= ∫ 𝑢(𝑥)𝐿𝜙(𝑥)𝑑𝑥
Ω

.                               

We also apply Fubini theorem in this calculation since 𝜙𝑓 ∈ 𝐿1(Ω). This means that 𝑢 is the very weak solution 

of problem (1). Now, by virtue to Theorem 3 we see that 𝑢 ∈ 𝑤𝐿
𝛼−2

𝛼
,𝜑(Ω). ∎ 

The last theorem below shows that modulus the gradient of the weak solution problem (1) belongs to the weak 

Morrey spaces 𝑤𝐿
𝛼−2

𝛼−1
,𝜑(Ω). 

Theorem 5. |∇𝑢| ∈ 𝑤𝐿
𝛼−2

𝛼−1
,𝜑(Ω). 

Proof. The proof follows the same method as in Theorem 3. Let 𝑥 ∈ Ω and 𝛿 > 0. We have 

∫
|𝑓(𝑦)|

|𝑥 − 𝑦|𝑛−1
𝑑𝑦

𝛺

≤ 𝐶𝑀(𝑓)(𝑥)
𝛼−1
𝛼−2‖𝑓‖

𝐿1,𝜑

1
2−𝛼 . 

Combining this inequality, inequality (5), and Lemma 3, we have 

|∇𝑢(𝑥)| ≤ 𝐶𝑀(𝑓)(𝑥)
𝛼−1
𝛼−2‖𝑓‖

𝐿1,𝜑

1
2−𝛼 . 

By applying Theorem 2, then 

𝑡
𝛼−2
𝛼−1|{𝑥 ∈ Ω(𝑎, 𝑟): |∇𝑢(𝑥)| > 𝑡}| ≤ 𝐶‖𝑓‖

𝐿1,𝜑

1
𝛼−1𝜑(𝑟). 

Here the positive constant 𝐶 is independent from 𝑎, 𝑟, and 𝑡. The theorem is already proved.∎ 

 

CONCLUSION 
The weak solution of the Dirichlet problem (1), by assuming the data is an element of some generalized Morrey 

spaces, belongs to some weak generalized Morrey spaces. Furthermore, this weak solution gradient also belongs to 

some weak generalized Morrey spaces.  
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