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Abstract. The paper presents validation of the numerical program that computes the 

distribution of marine current velocities in the Bangka strait and the kinetic energy potential in 

the form the distributions of available power per area in the Bangka strait. The numerical 

program used the RANS model where the pressure distribution in the vertical assumed to be 

hydrostatic. The 2D and 3D numerical program results compared with the measurement results 

that are observation results to the moment conditions of low and high tide currents. It found no 

different significant between the numerical results and the measurement results. There are 

0.97-2.2 kW/m
2
 the kinetic energy potential in the form the distributions of available power per 

area in the Bangka strait when low tide currents, whereas when high tide currents of 1.02-2.1 

kW/m
2
. The results show that to be enabling the installation of marine current turbines for 

construction of power plant in the Bangka strait, North Sulawesi, Indonesia. 

1.  Introduction 

The potential of kinetic energy in Bangka Strait, North Sulawesi, Indonesia can analyzed by approach 

of a numerical program that analyzes the velocity of the ocean currents necessary to calculate the 

kinetic energy of ocean currents.  

The study of ocean currents through numerical modeling has performed [1]. Who implicated the 

numerical model in San Francisco Bay California and the Lagoon of Venice, Italy by using semi-

implicit finite difference method for 3D shallow water flow, Rompas and Manongko [2] simulated the 

marine currents in the Bunaken strait, North Sulawesi, Indonesia with the numerical model, Rompas et 

al [3-5] studied the marine currents in the Bangka strait, North Sulawesi, Indonesia with the modelling 

and numerical simulation which predicted the velocities and the kinetic energies but the numerical 

program has not been validated, Rodrigues-Cuevas et al [6] researched a numerical model with 

difference turbulence models, O’Donncha et al [7] were applied the model-3D of hydro-environmental 

code to a designated tidal energy test site on the East Coast of the United States, Gonzales-Gorbena et 

al [8] optimized the hydrokinetic turbine array layouts by surrogate modelling, Zangiabadi et al [9, 10] 

developed the a CFD model by using the bathymetry of a potential tidal stream turbines deployment 

site and presented the tidal stream turbines for tidal power production. Martins et al [11] used 3D 

modelling in the Sado estuary by using a new generic vertical discretization approach. Luquet et al 

[12] tested design and model of an optimized ducted marine current turbine. The 3D hydrodynamic 

model used [13] for knowing influence of the Aral Sea negative water balance on its seasonal 

circulation patterns, whereas [14] studied climate with ocean modelling for eliminated short time 
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scales in long-term and high resolution of ocean circulation. The simulation of electrical power 

potential in the Alderney Race has been successfully which conducted by Myers and Bahaj [15] for 

marine current turbine arrays. On the other hand, Thiebot et al [16] developed the effects of large 

arrays of tidal turbines with dept-average Actuator Disks by modelling. Pinon et al [17] predicted 

wake of marine current turbines with a particle method by using the numerical simulation. Whereas, 

Elhanafi et al [18] used the numerical simulation with CFD to analyzing the offshore stationary-

floating oscillating water column-wave energy converter. Also, Ho and Riddette [19] applied CFD to 

evaluate hydraulic performance of spillways in Australia.  

The purpose of numerical program validation is to obtain a numerical program that can generate 

data in accordance with the measurement results [20]. Validation done by comparing the numerical 

programs with the data of measurement results and there are some researcher have conducted it. 

Maters et al [21] have validated a numerical program to analyzing tidal stream turbine. The study of 

numerical and experimental has conducted by Mycek et al [22] for analyzing interaction between two 

marine current turbines.   

This paper studied on the validation of the numerical program computation results to the 

measurement results of the velocities of marine current when the low tide and high tide in the Bangka 

Strait. The objectives of the study are getting validation results of the numerical program computation 

result to measurement result and analyzing the available power potential of marine current kinetic 

energy in the Bangka strait, North Sulawesi, Indonesia. 

2.  A Numerical Program 

2.1 A three-dimensional semi-implicit numerical method 

The three-dimensional semi-implicit numerical method used by Casulli & Cheng [1] and Chen [23] in 

the computation of shallow water flows. The method the finite differences is used for simplicity of its 

implementation. The basic idea consists with [24]: 

 To reduce the field of resolution of the differential equation to a limited field. 

 To define a grid (or grid) finished points of this field. 

 To approach the derivative this appears in the equation using a development of Taylor around the 

points of the grid. For the points located at the edges of the field of calculation, we will write the 

boundary conditions in an exact or possibly approximate way. 

Concerning the first and second phase, there are no general methods [25]. The determination of the 

field of calculation depends on the problem to approach. For the third stage, it is enough to recall that 

if f is a sufficiently regular function of the variable reality x in a vicinity of the point x0, then we have 

the development of following Taylor [25]: 
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 Where f 
(k)

 indicates the derivative of f of order k and θ  {0,1}. The order to which the 

development is truncated gives the space order of approximation of the quantity f. 

2.1.1. Fractional steps method. The basis algorithm consists of three fractional steps. We write [25]: 
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This leads to a successive resolution of three steps: 

 An advection step: 

t

ff n

C




+ advection terms = 0  ( VUf , )                                (3) 

 A diffusion step: 
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t

ff CD




+ diffusion terms = source terms  ( VUf , )                       (5) 

 A pressure-continuity step: 

t

ff D

n



1

+ pressure terms = 0                                          (6) 

This last step includes also the resolution of the continuity equation 0)( Udiv  that helps to 

deduce the water depth h and the vertical component of velocity W [25]. Each of these steps will be 

resolved in detail one after the other. Prior to this, however, discretization in space and building up the 

mesh to specified. 

2.1.2. Spatial discretization. The spatial discretization selected by a discretization with the differences 

finished in parallelepiped elements [1]. The parallelepiped makes it possible to build a three-

dimensional grid starting from a two-dimensional grid. It is enough to net in rectangles the two-

dimensional field, then to duplicate this grid on the vertical. It is possible to make with the same grid a 

calculation in 2D and 3D [26]. The grid makes it possible to discretize the physical field in a whole of 

material points to which we will apply the finite difference method. For the calculation of the 

variables, those are in a fixed mesh with different positions. Into particulate, the scalar sizes cantered. 

An Arakawa C-grid [26] is used. For the calculation of the variables, those are in a fixed mesh in 

different positions (staggered concealment), so much on the horizontal levels as on the vertical levels. 

The velocities defined on the edge of the mesh; we guessed virtual meshes to write the limiting 

conditions with the walls; we decorate the free surface with the grid. 

2.1.3. Advection step. In advection step we are using Eulerian-Lagrangian discretization of convective 

and viscous terms. This discretization is one of the major difficulties in the numerical treatment of the 

shallow water equations. Consider then the following convection-diffusion equation in three space 

dimensions [1]: 
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Where μ and νeff are non-negative diffusion coefficients and for the time being, the convective 

velocities u , v  and w  are assumed to be constants.  

The equation (7) can solve numerically in a variety of ways. A convenient semi-implicit finite 

difference method, whose stability does not depend upon the vertical eddy diffusivity, is obtained by 

discretizing the convective terms by explicit upwind finite differences, the horizontal eddy diffusivity 

by explicit central differences and the vertical eddy diffusivity term by an implicit finite difference. 

For non-negative u , v  and w  the resulting finite difference equation is: 
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For every i and j this method requires the solution of a symmetric, positive definite, tri-diagonal 

system. The necessary and sufficient stability condition of scheme equation (8) is 
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In convection-dominated problems, the stability condition equation (9) is not very restrictive. This 

method, however, is only first-order-accurate in space and the truncation error is in the form of a 

diffusion term. This artificial viscosity is directionally dependent. Hence, in convection-dominated 

problems, not only the artificial viscosity will prevail over the physical viscosity, but also drastically 

different numerical predictions can obtained simply because of different spatial orientations of the 

computational grid. 

In order to improve the stability and accuracy of an explicit finite difference method, consider 

again equation (7) in the Lagrangian form 
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Where the substantial derivative d/dt indicates that the time rate of change is calculated along the 

streak line defined by  

dx/dt = u ,     dy/dt = v ,     dz/dt = w                                         (11) 

 

A natural semi-implicit discretization of equation (10) is simply given by 
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Where a=u Δt/Δx, b= v Δt/Δy and d= w Δt/Δz are the grid Courant Numbers.  

 

Then 
n

dkbjaiC  ,,  in equation (12) approximated by Casulli and Cheng [1] become: 
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The stability condition for the scheme equation (12) as follow [1]   
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Which is much less restrictive than equation (9). Clearly, when μ=0, this scheme becomes 

unconditionally stable. 

2.1.4. Diffusion step. A general semi-implicit discretization of the momentum equations can write into 

form as [1]: 
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Where kjiz ,,2/1  and kjiz ,2/1,   are in general the thickness of the kth water layer more simply 

denoted by kz .  

 

The finite difference operator F in equations (15) and (16) can define as [1]: 
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The boundary conditions at the free surface and at the sediment-water interface are following [1]: 
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The equations (15) and (16) with the respective boundary conditions equations (19) and (20), we 

can write in the compact matrix form as [1, 5]: 
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




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 ΔZGUA                          (21) 
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
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 ΔZGVA                          (22) 

 

Where U, V, ΔZ, G and A are defined as: 
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A

 
Equations (21) and (22) are linear tri-diagonal systems which are coupled to the seawater surface 

elevation (
1n ) at time ( 1nt ). 

2.1.5. Pressure-continuity step. For determine 
1

,

n

ji  and for numerical stability, the new velocity field 

has to satisfy for each i,j the finite difference analogue of the seawater surface elevation equation:    
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                      (23) 

 

Or we can be written in the compact matrix form: 
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                       (24) 

 

Since A is positive definite, A
-1

 is also positive definite and therefore (ΔZ)
T
A

-1
ΔZ is a non-negative 

number. Hence equation (25) constitutes a linear five-diagonal system of equations for 
1

,

n

ji  which is 

symmetric and strictly diagonally dominant with positive elements on the main diagonal and negative 

ones elsewhere. Thus the system is positive definite and has a unique solution. In practice, this five-

diagonal system can be solved very efficiently by a conjugate gradient method. Once the new free 

surface location has been determined, equations (21) and (22) are readily applicable to yield the new 

velocities u , v  at time 1nt . 
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Finally, the vertical component of the velocity w  at the new time level can discretized from the 

continuity equation becomes: 
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                      (26) 

 

Where k=m,m+1,...,M, and the no-flux condition across the bottom boundary is assumed by taking 

.01

2/1,, 



n

mjiw  

2.2 The available power of marine current and the boundary conditions 

The available kinetic energy in this study is the available power per m
2
 (kW/m

2
). We used the 

available power that is equation of the marine current power in the Bangka strait from [2, 5]: 

331
,, 10)v(

2

1  n
kji

k

A

dt

E

P                                                   (27) 

Where P is the marine current power in the Bangka strait in kW/m
2
, Ek is kinetic energy, dt is time, 

and 
2221

,, wvuv n

kji  is velocity resultant with )(
2

1
u 1

,,1

1

,,





  n

kji

n

kji uu , 

)(
2

1
v 1

,1,

1

,,





  n

kji

n

kji vv  and )(
2

1
w 1

1,,

1

,,





  n

kji

n

kji ww  are scalars, respectively. 

 

We used the boundary conditions for the simulations of model 2D and 3D such as: 

 On the free surface the effect of the wind, supposed negligible which is not taken into account, 

which translated by 0




n

U
 . 

 At the bottom, the coefficient of friction (law of Chezy) is Cz = 48. 

 At open boundary condition, we can radiation equation from Treguier et al [27]. 

 

The values of parameter in the computational of numerical program, we used: 

 The domain of computation is discretized of 55332 elements (for 2D) where 174 elements in 

direction x and 318 elements in direction y.  

 Each element of horizontal is 60 m x 60 m. In 3D, there are 221328 elements where 174 elements 

in x-direction, 318 elements in y-direction and 4 elements in z-direction.  

 Each element is parallelepiped dimensions of 60 m x 60 m x 20 m. 

 The flow rate is 0.3 Sv (300000 m
3
/s where 1 Sv = 1 x 10

6
 m

3
/s [28]) with two conditions of 

marine currents e.g. when low and high tide. 

3.  Results and Discussion 

The comparisons of numerical model results and measurement results have been obtained by specify 

the velocity measurement results at area inlet and outlet as boundary conditions. Then, the numerical 

model results (2D and 3D) are studied and compared mainly focused at points location of P1 to P9 

(see Figure 1). Finally, the numerical model results for the study on marine currents in the Bangka 

strait has been obtained both in 2D and 3D with four flow rates variations which are as the inlet 

boundary conditions. 
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Figure 1. The locations of measurement. 

3.1.  The comparisons of the numerical program results and the measurement results 

Figure 2 shows the comparisons of the minimum velocities from the measurement (observation) 

results and the numerical program (2D and 3D model) results when low tide currents. The velocities in 

locations of P3 and P8 are come near with results of observation but the other locations are rather 

different. The difference values of velocities for both 2D and 3D to observed results in P3 are 0.1 m/s 

and its directions are 11
0
 (Figure 3), whereas in P8 of 0.02 m/s for 3D and there is not for 2D and only 

2
0
 for both 2D and 3D respectively. On the contrary, in P1, there is 0.34 m/s for 2D and 0.38 m/s for 

3D, whereas its directions for both 2D and 3D of 18
0
 respectively. 

 
Figure 2. Current velocities at the minimum velocities boundary condition when 

low tide currents. 
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The current directions from the numerical model results are not so differ with the observation 

results mainly P4 to P8 (Figure 3) and also points of P5 to P7 in Figure 5 with boundary conditions of 

the maximum velocities whereas the other locations are rather different. The biggest differences are in 

locations of P1, P2, P5, and P9. If we see in Figure 4, the velocities at P5 to P7 are not so differ 

between observation results and numerical model with the boundary conditions. Whereas velocities 

from the calculation results of 2D and 3D models are not so differ. 

 
Figure 3. Current directions at the minimum velocities boundary condition when low tide 

currents. 

 

The difference values of velocities for both 2D and 3D to observed results in P5 are 0.04 m/s 

(Figure 4) and its directions are 3
0
 in Figure 5, then in P7 of 0.04 m/s for 2D and 0.02 m/s for 2D and 

there are not differ with its directions for both 2D and 3D respectively. On the contrary, in P1, there is 

0.55 m/s for 2D and 0.58 m/s for 3D, whereas its directions for both 2D and 3D of 20
0
 respectively. 

 
Figure 4. Current velocities at the maximum velocities boundary condition when low tide 

currents. 
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Figure 5. Current directions at the maximum velocities boundary condition when low tide 

currents. 

 

Figure 6 shows comparisons of the minimum velocities from observation results with the numerical 

model results when high tide currents. At point P4 where the velocity of 2D and 3D models result 

compared to the observation result is almost same and also at points of P4 to P6 in Figure 7. Whereas 

current directions rather near between models (2D and 3D) and observation in Figure 8 except at 

points P1 to P3. 

 
Figure 6. Current velocities at the minimum velocities boundary condition when high tide 

currents. 
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Figure 7. Distributions of the available power per m
2
 at seawater column of 20 m when low tide 

currents at flow rate of 0.3 Sv in the Bangka strait. 

 

Figure 8. Distributions of the available power per m
2
 at seawater column of 20 m when high tide 

currents at flow rate of 0.3 Sv in the Bangka strait. 
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3.2. The kinetic energy potential in the Bangka strait 

The kinetic energy potential in this study that generated in form the available power of marine current 

in the Bangka strait have been analyzed. We can see the distributions of the available power per unit 

of area (kW/m
2
) at seawater column of 20 m in Figures 7 and 8 which described the potential in the 

Bangka strait when low and high tide currents at flow rate of 0.3 Sv (1 Sv = 1 x 10
6
 m

3
/s [27]). 

Figure 7 shows distributions of available power per m
2
 at seawater column of 20 m when low tide 

currents at of 0.3 Sv in the Bangka strait. There is 2.22 kW/m
2
 of the available power at P4 and its 

value is biggest compared at the other points. It caused by nearby the point is existed a manger with 

deepness of ~5 m. On the contrary, the value of available power per m
2
 is smallest at P1 (0.97 kW/m

2
). 

We can also see that available power per m
2
 in South area of Bangka island (in the enter channel) 

where around 3-5 kW/m
2
 bigger than the other area in around that of 1.5 kW/m

2
. Also, in West area, 

especially at center area where power availabilities around 2-7 kW/m
2
. Whereas in North and South 

area where available power per m
2
 still less unless near point of P9 about 2-3 kW /m

2
. If we see in 

Westside of P6 and P7 where there are power availabilities biggest around 9-10 kW/m
2
. That thing 

caused by existence of manger and average depth in the place of ~5 m [3, 5]. 

The distributions of the available power per m
2
 at seawater column of 20 m when high tide 

currents at flow rate of 0.3 Sv in the Bangka strait showed in Figure 8. The available power per m
2
 

counted of 1.02 kW/m
2
 at point of P1 and that value is smallest if compared with the other points. On 

the contrary, there is 2.1 kW/m
2
 available of the biggest available power per m

2
 at P8 which has the 

biggest velocity. 

4.  Conclusions 
The validations of the numerical program through the comparisons of the numerical computation 

results and the measurement results have been analyzed and the results are not so far different. The 

kinetic energy potential in the form the distributions of available power per area in the Bangka strait 

when low tide currents of 0.97-2.2 kW/m
2
, whereas when high tide currents of 1.02-2.1 kW/m

2
. The 

results show that to be enabling the installation of marine current turbines for construction of power 

plant in the Bangka strait, North Sulawesi, Indonesia. 
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