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Abstract. The paper presents validation of the numerical program that computes the
distribution of marine current velocities in the Bangka strait and the kinetic energy potential in
the form the distributions of available poffE} per area in the Bangka strait. The numerical
program used the RANS model where the pressure distribution in the vertical assumed to be
hydrostatic. The 2D and 3D numerical program results compared with the measurement results
that are observation results to the moment conditions of low and high tide currents. It found no
different significant between the numerical results and the measurement results. There are
0.97-2.2 kW/m® the kinetffJenergy potential in the form the distributions of available power per
area in the Bangka strait when low tide currents, whereas when high tide currents of 1.02-2.1
kW/m®. The rdits show that to be enabling the installation of marine current turbines for
construction of power plant in the Bangka strait, North Sulawesi, Indonesia.

1. Introductio

The potential of kinetic energy in Bangka Strait, North Sulawesi, Indonesia can analyzed by approach
of a numerical program that analyzes the velocity of the ocean currents necessary to calculate the
kinetic energy of ocean currents.

The study of n currents through numerical modeling has performed [1]. Who implicatﬁ the
numerical model 1n San Francisco Bay California and the Lagoon of Venice, Italy by using semi-
alplicit finite difference method for 3D shallow water flow, Rompas and Manongko [2] simulated the
marine currents in Bunaken strait, North Sulawesi, Indonesia with the numerical model, Rompas et
al [3-5] studied the marine currents in the Bangka strait, North Sulawesi, Indonesia with the modelling
and numerical simulation which predicted the velocities and the kinetic energies but the numerical
program has not been validated, Rodrigues-Cuevas et al [6] researched a numerical model with
diffeﬁ:e turbulence models, O’Donncha et al [7] were applied the model-3D ofhydro—en\?nmental
code to a designated tidal energy test site on the East Coast of the United States, Gonzales-Gorbena et
al [8] optimized the hydrokinetic turbine array layouts by surrogate modelling, Zangiabadi et al [9, 10]
developed the a CFD model by using the bathymetry of a potential tidal stream turbines deploy
site and presented the tidal stream turbines for tidal power production. Martins et al [11] used 3D
modelling @)the Sado estuary by using a new generic vertical discretization approach. Luquet et al
[12] tested design and model 0@1 optimized ducted marine current turbine. The 3D hydrodynamic
model used [13] for knowing intfluence of the Aral Sea negative water balance on its seasonal
circulation pattems, whereas [14] studied climate with ocean modelling for eliminated short time

3
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work. journal citation and DOL
Published under licence by IOP Publishing Ltd 1




ICIEVE 2017 10P Publishing
IOP Conf. Series: Materials Science and Engineering 306 (2018) 012102  doi:10.1088/1757-899X/306/1/012102

5

gales in long-term and high resolution of ocean circulation. The simulation of electrical power
potential in the Alderney Race has been successfully which conducted by Myers and Bahaj i#$] for
marine current turbine arrays. On the other hand, Thiebot et al [16] developed effects of large
arrays of tidal turbines with dept-average Actuator Disks by modelling. Pinon et al [17] predicted
wake of marine current turbines with a particle method by using the numerical si#f#ilation. Whereas,
Elhanafi et al [18] used the numerical simulation with CFD to analyzing the offshore stationa
floating oscillating water column-wave energy converter. Also, Ho and Riddette [19] applied CFD to
evaluate hydraulic performance of spillways in Australia.

The purpose of numerical program validation is to obtain a numerical program that can generate
data in accordance with the measurement results [20]. Validation done by comparing the numerical
programs with the data of measurement results and there are some researcher have conducted it.
Maters et al [21] have validated a numerical program to analyzing tidal stream turbine. The study of
numerical and experimental has conducted by Mycek et al [22] for analyzing interaction between two
marine current turbines.

This paper studied on the validation of the numerical program computation results to the
measurement results of the velocities of marine current when the low tide and high tide in the Bangka
Strait. The objectives of the study are getting validation results of the numerical program compfation
result to measurement result and analyzing the available power potential of marine current kinetic
energy in the Bangka strait, North Sulawesi, Indonesia.

2. A Numerical Program

2.1 4 greedfmemfonal semi-implicit numerical method

The three-dimensional semi-implicit numerical method used by Casulli & Cheng [1] and Chen [23] in

the computation of shallow water flows. The method the finite differences is used for simplicity of its

implementation. The basic idea consists with [24]:

e  To reduce the field of resolution of the differential equation to a limited field.

e  To define a grid (or grid) finished points of this field.

e  To approach the derivative this appears in the equation using a development of Taylor around the
points of the grid. For the points located at the edges of the field of calculation, we will write the
boundary conditions in an exact or possibly approximate way.

Concerning the first and second phase, there are no general methods [25]. The determination of the
field of calculation depends on the problem to approach. For the third stage, it is enough to recall that
if fis a sufficiently regular function of the variable reality x in a vicinity of the point x,, then we have
the development of following Taylor [25]:

n (k) (n+l1)
f(x)zz(x_xo)kf (x())_'_(x_xo)nﬂ f [9x+(] 9).}(0] (1
e k! (n+1)!
Where f * indicates the derivative of f of order k and # € {0,1}. The order to which the
development is truncated gives the space order of approximation of the quantity f.

2.1.1. Fractional steps method. The basis algorithm consists of three fractional steps. We write [25]:

& _ o+ fo— et fe—f"

(2
Ot At
This leads to a successive resolution of three steps:
* An advection step:
u+advecti0n terms=0 ( f =U,V) 3)

At
* A diffusion step:




ICIEVE 2017 10P Publishing
IOP Conf. Series: Materials Science and Engineering 306 (2018) 012102  doi:10.1088/1757-899X/306/1/012102

fu_fc“

T+ diffusion terms = source terms ( f =U,V) (5)
!

* A pressure-continuity step:

- f

D 4 pressure terms = 0 (6)
At

This last step includes also the resolution of the continuity equation div(a) =0 that helps to
deduce the water depth i and the vertical component of velocity W [25]. Each of these steps will be
resolved in detail one after the other. Prior to this, however, discretization in space and building up the
mesh to specified.

2.1.2. Spatial discretization. The spatial discretization selected by a discretization with the differences
finished in parallelepiped elements [1]. The parallelepiped makes it possible to build a three-
dimensional grid starting from a two-dimensional grid. It is enough to net in rectangles the two-
dimensional field, then to duplicate this grid on the vertical. It is possible to make with the same grid a
calculation in 2D and 3D [26]. The grid makes it possible to discretize the physical field in a whole of
material points to which we will apply the finite difference method. For the calculation of the
variables, those are in a fixed mesh with different positions. Into particulate, the scalar sizes cantered.

An Arakawa C-grid [26] is used. For the calculation of the variables, those are in a fixed mesh in
different positions (staggered concealment), so much on the horizontal levels as on the vertical levels.
The velocities defined on the edge of the mesh; we guessed virtual meshes to write the limiting
conditions with the walls; we decorate the free surface with the grid.

2.1.3. Advection step. In advection step we are using Eulerian-Lagrangian discretization of convective
and viscous terms. This discretization is one of the major difficulties in the numerical treatment of the
shallow water equations. Consider then the following convection-diffusion equation in three space
dimensions [1]:

oC _oC _oC _oC o'Cc o'C a[ PC]
+u +Vv +w =u Tt [t Ve — (7)
ot ax oy 0z ax® oy o o

Where u and v are non-negative diffusion coefficients and for the time being, the convective
velocities i , v and W are assumed to be constants.

The equation (7) can solve numerically in a variety of ways. A convenient semi-implicit finite
difference method, whose stability does not depend upon the vertical eddy diffusivity, is obtained by
discretizing the convective terms by explicit upwind finite differences, the horizontal eddy diffusivity
by explicit central differences and the vertical eddy diffusivity term by an implicit finite difference.

For non-negative u, v and w tlmesu]ting finite difference equation is:

H+l1 I3 H " I3 I3 "
Cr‘.j‘k _Cr"jjc E Cr’.j‘k _Cr'—]‘j.k - Cr"j‘i‘cf‘j—]i' +;Crﬂj‘k—]
At : Ay Az
n " n " n n
_ Cr’+l,jJ-‘ _Zcf.j,k Rl TRy + Cr’,j+IJ¢ _ZCLM 0 (8)
a a
Ax® Ay~
n+l n+l s+l n+l
v Cf,;,m] _Cr',j,!: Y Cr‘,j,l: _Cr',ji:—]
effiaiz - difi_y;2
N AZ, i AZ; g1
Azf,j,k
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For every i and j this method requires the solution of a symmetric, positive definite, tri-diagonal
system. The necessary and sufficient stability condition of scheme equation (8) is

{IEI ", Il ‘{ ! lﬂ
M| —+—+— 21U —+— (9
Ax Ay Az Ax® Ay”

In convection-dominated prafZims, the stability condition equation (9) is not very restrictive. This
method, however, is only first-order-accurate in space and the truncation error is in the form of a
diffusion term. This artificial viscosity is directionally dependent. Hence, in convection-dominated
problems, not only the artificial viscosity will prevail over the physical viscosity, but also drastically
different numerical predictions can obtained simply because of different spatial orientations of the
corfffutational grid.

In order to improve the stability and accuracy of an explicit finite difference method, consider
again equation (7) in the Lagrangian form

©_rc.oc) o, x (10)
a Mo "oy ) a7 e

Where the substantial derivative d/dr indicates that the time rate of change is calculated along the
streak line defined by
dy/de=uw , dy/de=Vv, dz/di=w (11)

A natural semi-implicit discretization of equation (10) is simply given by

B N R e
ni+l n+l eff § _"ﬁ-—_ -
Cr;}c _Cr—:,j—b‘k—d _ | AZr.jJHHZ R’ A“r,jk—]fz “2)
At AZEJ 56
ny Cimu—b,x—d _2C:ia,j—bk—d +Ci’1¢r—],_{—b,k—d + Cia,j—bl],k—d _zc;ia,j—b,k—d + C::b,j—b—],k—d
Ax? Ay?
Where a=; At/Ax, b=; At/Ay and d= ; At/Az are the grid Courant Numbers.
Then C", ; ,, , in equation (12) approximated by Casulli and Cheng [1] become:
Clajpsa =A=r){- p)I(Qq)C:if,j—m,k—n +9C i)
+pl(1— q)C:if—]‘j—m‘kﬂ_ qC:r—f—]‘j—m—]‘k—n 1}
+r{(1-p)d —q)C,-"ﬂ_m 1 ¥ 40 ken )
+ pld- q)cr’:—l,j—mk—n—l + qcf"-f—l,j—m-u—n—l ¥ (13)

The stability condition for the scheme equation (12) as follow [1]
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=1

1
Ay

Which is much less restrictive than equation (9). Clearly, when x=0, this scheme becomes
unconditionally stable.

At<|2u + (14)

2 2

2.1.4. Diffusion step. A general semi-implicit discretization of the momentum equations can write into
form as [1]:

—n+l _ —\ 1 At n+l n+l )
Uigioju = (FU) i s _8_(7?r'+1.; M
Ax

n+l —n+l —n+l —n+l
|i+1.n’2,j,k+1 Uik Wiviiaje =i, jaa
Vi Az Vi Az
i+1/2,jk+1/2 i+1/2,j k172
A , (15)
AZiiz,j x
At
—n+l n ni+l n+l
Viwox =EV)ijnne — 8 A '('?r',h—] —Ni )
Y
—n+l —rn+l —n+l —n+]
vrgj+1f1tm_ vrpj+1fu- vr"j+].u’2‘i' _vr',j+1ru—1
Vi Az “Vian Az
-
it 2 k12 P2 k-172
+ At (16)
Azr',jﬂa’lic

Where AZH]IZ,)J: and Azu‘ﬂflk are in general the thickness of the kth water layer more simply

denoted by Az, .
The finite difference operator F in equations (15) and (16) can define as [1]:

(FE)"H _ E:r
12,5k T il 2=at], j=b k—d

—n —n —n
i+1/2—arl jbk—d 28,113, jobk—d THiya ot jpk-d

u
+ pAt

=
Ax~
=n = n o n
Hr‘+1.~’2—:f,j—b+])"—d B 2“r‘+uz—n,j—bx—d + Hr‘+].-'2—rr,j—b—],k—d
2
Ay
—n
+ -ﬁ-orAWH]a’l—(r,f—h,k—d ? ( l?)
AT n+l _ =n
( 'V)r'.;ﬂxu - ‘yl—a‘jﬂfl—b,k—d
o on o
Vicatl, j+1/2-bk—d v, i+102-bk—d T Vicact jr1/2-b k—d
+ At -
Ax”
—n _Agh —n
v i—a, j+1/2-b+1 k—d 2 lyr'—v:f L 2—b k—d + l"r'—.cf AN 2= e—d
+ 2
Ay~
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—
- f(urAn‘!f—:r,fﬂa’Z—Ji,i—d (18)
The boundary conditions at the free surface and at the sediment-water interface are following [1]:
—n+l _ ntl —n+l —n+l
i ma "M, Vijnioma " Vipom
Vi _ =T, Vyan N =T,
A"HIHJ,MHJ’E A“'f.j+1.~’2,M+]a’2 (19)
—rn+l —n+l \/K—Jr )‘ (—:r )3 }
ar'+]a'1,f,m_ur'ﬂa'l,j,m—] __g H'”" i.m r+].’1,j,"l E"H
m=1/2 - i+1/2, j.m
Azr'+].l’2,f',m—].l"2 C
(20)
+1 +1 \/{ n )1 ( 1 )1}
= —n — —
v vi,j+].a' 2.m _vi‘jﬂ;z‘m—] _ g ur,”]a‘l,ur + vr,f+].a'1,m ‘—)rr+]
m=1/2 - 2 i+l 2m
Azrfﬂa"m 1/2 C'

The equat]ons (15) and (16) with the respective bounddry conditions equations (19) and (20), we
can write in the compact matrix form ag 1, 5]:

n n+l _n Ar ( n+] J'i+] )A

Ar’+].-‘2,jUr'+1.-'2,,l' - Gr'+1.-‘2,j -8 Ax r+] J Z’r+].f2_f (21)
n ntl _ n n+l n+l

Ar f+].f"Vr jH2 T Gr’,f’+].f" g (";“r j+l 7"?r i )Az'r j+1/2 (22)

Where U, V, AZ, G and A are defined as:

[ —n+l ] [ —ntl T _ _
+1/2, .M i j+1i2.M AZM
— i+l = htl
Wigajm Vi jizmo Az,
ni+l —n+l nitl —n+l
Uf-r].l’l,j = U2 jm-2 |» Vr 02 = | Vi m-z |5 AZ = A"M‘—" ’
—n+l —ntl -
W12 jum Vi jrizm L A2 |
F'_ ll'_ F'_ ll'_
A*'M( )r+u’ JM +AIT‘ A“' ( )r,a+1n M +AFT_\-
"
(49] Azy ((Fit) ) e Azyy, ( "’)r‘,jsz—]
n n
Fitl/2,j — M ‘!(F”)HHUM 2 Fij+/2 = &M—‘!(J )r;+11"M—"
A‘“m (Fu:)r-r].f" LJam "'m (J )r 2 m
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)

. Vg Dagaan M =V Daain A .
Ty F
Azy i Azy i
- n A v At (v QA = (v t
B ( r,f)M'-I.Z 7M+( nr[r)_w_];g +( !‘.\f)M' 172 ( rﬁ)M'Q_
- Azy i Az AZy 2 A2y 2
-(v. g M Vo Vst A m,gir-’ +7?)
0 Ak ‘ﬁzur+ ! - +g {\
Azm 142 a AZ,“,H,._? C; ]

Equations (21) and (22) are linear tri-diagonal systems which are coupled to the seawater surface

elevation (7?"“ yattime ([,.,).

" and for numerical stability, the new velocity field

2.1.5. Pressure-continuity step. For determine 7;;

has to satisty for each i,j the finite difference analogue of the seawater surface elevation equation:

ntl J'r 7rr+1 —n+l
i =0 ZA T jalinge — AZr‘—]a’Z,j,kur'—la’z.j,ki|
(23)
A —n+l
A\’ AZ; 12k v J+1;2.t Sij2x Vi1
k=m
Or we can be written in the compact matrix form:
n+l _ _n At ( )T n+l ( )T n+l ]
T:.; _r}r',j_E AZH].-’Z,} Ur+].-’1,j_ AZsz,j Usz,;
A (24)
ntl ritl
_A_V (AZi,j+l.n’2) Vr 2 (AZU u’) Vlj 1:‘!]

Since A is p@itive definite, A’ is also positive definite and therefore (AZ)'A'AZ is a non-negative

J'I'+]

ber. Hence equation (25) constitutes a linear five-diagonal system of equations for #;";" which is

symmetric and strictly diagonally dominant with positive elements on the main diagonal and negative
ones elsefflere. Thus the system is positive definite 8} has a unique solution. In practice, this five-
diagonal system can be solved very efficiently by a conjugate gradient method. Once the new free
surface location has been determined, equations (21) and (22) are readily applicable to yield the new

velocities & , v attime £, .

ntl
ij.

azl, - ) -l aazl,, (ot -

_g_{[(m acaz] - lan A, i)
:q:j _%{[(AZ)TA_]GI'HIIJ [( ) ]G:r].” }
_i_;{[(AZ)TA_]Grj+H]_’( ) _]G:r —].”}

(25)
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[ 15) _
Finally, the vertical component of the velocity w at the new time level can discretized from the
continuity equation becomes:

n —n+l n — i+l
— AZMJLM“HUL;J: _Azl—].l’lj‘k ur‘—lflji‘
Wijkriz = Wija1a — Ax
(26)
- ] F"ﬂ _ AN 7 F"T]
Bj+L24 70 g+ 2k i g-12k T -1 2k
Ay

Where k=m,m+1.....M, and the no-flux condition across the bottom boundary is assumed by taking
— i+l
Wi im-112 = 0.
2.2 The available power of marine current and the boundary conditions
The available kinetic energy in this study is the available power per m® (kW/m’). We used the
available power that is equation of the marine current power in the Bangka strait from [2, 5]

E/
k
dt

1 113,03
P =—S=2p (510 27)
Where P is the marine current power in the Bangka strait in kW/m”, E; is kinetic energy, df is time,
—5  —1  —>3 . . . _ 1 _ 1 —n+l
and v =N+ W is  velocity  resultant  with u= E(u;f;k + Ltr.:j‘k),
= 1 —n+l —n+l - —n+l —n+l .
v =E(V,-J-J\. + V,-‘),-H‘,\.) and W = E(Wi'j‘k + W,-‘),-hj) are scalars, respectively.

We used the boundary conditions for the simulations of model 2D and 3D such as:
e On the free surface the effect of the wind, supposed negligible which is not taken into account,

: oU
which translated by v ti— =0.
on
e At the bottom, the coetficient of friction (law of Chezy) is C. =48.
e At open boundary condition, we can radiation equation from Treguier et al [27].

The values of parameter in the computational of numerical program, we used:

e The domain of computation is discretized of 55332 elements (for 2D) where 174 elements in
direction x and 318 elements in direction y.

. @:h element of horizontal is 60 m x 60 m. In 3D, there are 221328 elements where 174 elements
in x-direction, 318 elements in y-direction and 4 elements in z-direction.

e FEachelement is parallelepiped dimensions of 60 m x 60 m x 20 m.

e The flow rate is 0.3 Sv (300000 m’/s where 1 Sv =1 x 10° m%s [28]) with two conditions of
marine currents e.g. when low and high tide.

3. Results and Discussion

The comparisons of numerical model results and measurement results have been obtained by specify
the velocity measurement results at area inlet and outlet as boundary conditions. Then, the numerical
model results (2D and 3D) are studied and compared mainly focused at points location of P1 to P9
(see Figure 1). Finally, the numerical model results for the study on marine currents in the Bangka
strait has been obtained both in 2D and 3D with four flow rates variations which are as the inlet
boundary conditions.
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Figure 1. The locations of measurement.

3.1. The comparisons of the numerical program results and the measurement results

Figure 2 shows the comparisons of the minimum velocities from the measurement (observation)
results and the numerical program (2D and 3D model) results when low tide currents. The velocities in
locations of P3 and P8 are come near with results of observation but the other locations are rather
different. The difference values of velocities for both 2D and 3D to observed results in P3 are 0.1 m/s
and its directions are 11° (Figure 3), whereas in P8 of 0.02 m/s for 3D and there is not for 2D and only
2" for both 2D and 3D respectively. On the contrary, in P1, there is 0.34 m/s for 2D and 0.38 m/s for
3D, whereas its directions for both 2D and 3D of 18" respectively.

2

1.8 1 g= L._i__{
1.6 // Q%___ /L\\.

14
12

—e— Obsened

—a—2D

0.8 - 3D

R (m/s)

0 T T T T T T T T
Pl P2 P3 P4 P5 P6 P7 P8 P9

POINTS

Figure 2. Current velocities at the minimum velocities boundary condition when
low tide currents.
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The current directions from the numerical model results are not so differ with the observation
results mainly P4 to P8 (Figure 3) and also points of P5 to P7 in Figure 5 with boundary conditions of
the maximum velocities whereas the other locations are rather different. The biggest differences are in
locations of P1, P2, P5, and P9. If we see in Figure 4, the velocities at P5 to P7 are not so differ
between observation results and numerical model with the boundary conditions. Whereas velocities
from the calculation results of 2D and 3D models are not so differ.

400

350 - g

8
IS

250 1 —e— Obsenved
200 - —a—2D
3D

DIRECTION (degree)

0 T T T
P1 P2 P3 P4 P5 P6 P7 P8 P9

POINTS

Figure 3. Current directions at the minimum velocities boundary condition when low tide
currents.

The difference values of velocities for both 2D and 3D observed results in P5 are 0.04 m/s
(Figure 4) and its directions are 3" in Figure 5, then in P7 of 0.04 m/s for 2D and 0.02 m/s for 2D and
there are not differ with its directions for both 2D and 3D respectively. On the contrary, in P, there is
0.55 m/s for 2D and 0.58 m/s for 3D, whereas its directions for both 2D and 3D of 20" respectively.

25
24 pg—r—_r—g
: ~ N
—
@ 191 r —+— Observed
E —=—2D
T 3D
10
0.5 A
0 T T T - T T T T
Pt P2 P3 P4 P5 P6 P7 P8 P9
POINTS

Figure 4. Current velocities at the maximum velocities boundary condition when low tide
currents.
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200 4 —a—2D
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150 A

DIRECTION (degree)

-~ g 88

P1 P2 P3 P4 P5 P6 P7 P8 P9
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Figure 5. Current directions at the maximum velocities boundary condition when low tide
currents.

Figure 6 shows comparisons of the minimum velocities from observation results with the numerical
model results when high tide currents. At point P4 where the velocity of 2D and 3D models result
compared to the observation result is almost same and also at points of P4 to P6 in Figure 7. Whereas
current directions rather near between models (2D and 3D) and observation in Figure 8 except at
points PI to P3.

—+— Obsened
—=—2D
3D
e
0.5
0 T T T T T T T T

Pi P2 P3 P4 P5 P6 P7 P8 P9
POINTS

Figure 6. Current velocities at the minimum velocities boundary condition when high tide
currents.
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Bangka Island

Figure 7. Distributions of the available power per m” at scawater column of 20 m when low tide

currents at flow rate of 0.3 Sv in the Bangka strait.

Figure 8. Distributions of the available power per m’ at seawater column of 20 m when high tide

currents at flow rate of 0.3 Sv in the Bangka strait.
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3.2 %e kinetic energy potential in the Bangka strait

The kinetic energy potential in this study that generated in form the available power of marine current
in the Bangka strait have been analyzed. We can see the distributions of the available power per unit
of area (kW/m?) at seawater column of 20 m in Figures 7 andf) which described the potential in the
Bangka strait when low and high tide currents at flow rate of 0.3 Sv (1 Sv =1 x 10° m’/s [27]).

Figure 7 shows distributions of available power per m* at seawater column of 20 m when low tide
currents at of 0.3 Sv in the Bangka strait. There is 2.22 kW/m® of the available power at P4 and its
value is biggest compared at the other points. It caused by nearby the point is existed a manger with
deepness of ~5 m. On the contrary, the value of available power per m” is smallest at P1 (0.97 kW/m®).
We can also see that available power per m® in South area of Bangka island (in the enter channel)
where around 3-5 kW/m® bigger than the other area in around that of 1.5 kW/m>. Also. in West area,
especially at center area where power availabilities around 2-7 kW/m®. Whereas in North and South
area where available power per m” still less unless near point of P9 about 2-3 kW /m’. If we see in
Westside of P6 and P7 where there are power availabilities biggest around 9-10 kW/m?”. That thing
caused by existence of manger and average depth in the place of ~5 m [3, 5].

The distributions of the available power per m® at seawater column of 20 m when high tide
currents at flow rate of 0.3 Sv in the Bangka strait showed in Figure 8. The available power per m*
counted of 1.02 kW/m® at point of P1 and that value is smallest if compared with the other points. On
the contrary, there is 2.1 kW/m® available of the biggest available power per m? at P8 which has the
biggest velocity.

4. Conclusions

The validations of the numerical program through the comparisons of the numerical computation
results and the measurement results have been analyzed and the results are not so far different. The
kinetic energy potential in the form the distributions of available power per area in the Bangka strait
when low tide currents of 0.97-2.2 kW/m?, whereas when high tide currents of 1.02-2.1 karra The
results show that to be enabling the installation of marine current turbines for construction of power
plant in the Bangka strait, North Sulawesi, Indonesia.
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