Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/33
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRantung, Vivi Peggie-
dc.contributor.authorKembuan, Olivia-
dc.contributor.authorRompas, Parabelem Tinno Dolf-
dc.contributor.authorMewengkang, Alfrina-
dc.contributor.authorLiando, Olivia Eunike Selvie-
dc.contributor.authorSumayku, James-
dc.date.accessioned2018-03-21T00:56:47Z-
dc.date.available2018-03-21T00:56:47Z-
dc.date.issued2018-02-22-
dc.identifier.citationV P Rantung et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 306 012129en_US
dc.identifier.otherdoi:10.1088/1757-899X/306/1/012129-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/33-
dc.description.abstractThis research aims to discuss in-memory Business Intelligent (BI) and to model the business analysis questions to know the performance of the in-memory BI. By using, the Qlickview application found BI dashboards that easily accessed and modified. The dashboards are developed together using an agile development approach such as pre-study, planning, iterative execution, implementation, and evaluation. At the end, this research helping analyzer in choosing a right implementation for BI solution.en_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltden_US
dc.relation.ispartofseriesIOP Conf. Series: Materials Science and Engineering;306-
dc.titleIn-Memory Business Intelligence: Concepts and Performanceen_US
dc.typeArticleen_US
Appears in Collections:Lecturer Scientific Papers

Files in This Item:
File Description SizeFormat 
Rantung_2018_IOP_Conf._Ser.%3A_Mater._Sci._Eng._306_012129.pdfPaper : In-Memory Business Intelligence: Concepts and Performance816.08 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.