Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/511
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRantung, V P-
dc.contributor.authorKembuan, O-
dc.contributor.authorRompas, Parabelem Tinno Dolf-
dc.contributor.authorMEwengkang, A-
dc.contributor.authorLiando, O-
dc.contributor.authorSumayku, J-
dc.date.accessioned2020-05-07T07:16:36Z-
dc.date.available2020-05-07T07:16:36Z-
dc.date.issued2018-
dc.identifier.citationICIEVE 2017en_US
dc.identifier.isbn17578981, 1757899X-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/511-
dc.description.abstractAbstract.This research aims to discuss in-memory Business Intelligent (BI) and to model the business analysis questions to know the performance of the in-memory BI. By using, the Qlickview application found BI dashboards that easily accessed and modified. The dashboards are developed together using an agile development approach such as pre-study, planning, iterative execution, implementation, and evaluation. At the end, this research helping analyzer in choosing a right implementation for BI solutionen_US
dc.language.isoenen_US
dc.publisherIOP Conference Series: Materials Science and Engineeringen_US
dc.relation.ispartofseriesIOP Conf. Series: Materials Science and Engineering 306(2018) 012129 doi:10.1088/1757-899X/306/1/012129;-
dc.titleIn-Memory Business Intelligence: Concepts and Performanceen_US
dc.typeArticleen_US
Appears in Collections:Lecturer Scientific Papers



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.